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I wrote the first version of these notes to accompany a set of lectures I gave at the SIGRAV school, Vietri sul
Mare, February 2020. They also later served as a basis for lectures I gave at the Michigan Cosmology Summer
School, Ann Arbor, June 2025. During this interval, GW tests of gravity matured significantly (particularly
dark sirens analyses). The GW section of these notes (section 4.5) remains a little lightweight compared to
the actual lectures I give; I hope to find time to update that section one day.

These notes are not a complete verbal description of my lectures. Instead they are mainly a summary of
the key equations. As with any lecture notes, they may not reflect the very latest results in the field, and
referencing could definitely be improved. I’ll highlight that the excellent book by Luca Amendola and Shinji
Tsujikawa: “Dark Energy: Theory and Observations” was a very helpful resource when putting together these
notes.

Typos and sign errors are always possible; please do email me at tessa.baker@port.ac.uk if you find some.
I’ll use c = 1 throughout.

1 Cosmological Perturbation Theory

1.1 Metric

Gµν = Rµν −
1

2
gµνR = 8πGTµν (1)

Perturbed metric:

ds2 = −a2 (1− 2A) dη2 + a2∂iBdx
idη + a2 [(1 + 2C)γij +DijE] dxidxj (2)

ds2 = −a2 (1 + 2Ψ) dη2 + a2(1− 2Φ)γijdx
idxj (3)

where Φ, Ψ are functions of η, x, y, z. Hubble factor H = ȧ/a, dot represents conformal time derivative.

Ḡ00 = 3H2 (4)

Ḡij = −δij
(
2Ḣ+H2

)
(5)

δG00 = 2∇2Φ+ 6HΦ̇ (6)

δG0i = 2∇i

(
Φ̇ +HΨ

)
(7)

δGij = δij

[
2(Φ + Ψ)(2Ḣ+H2) + 2H(2Φ̇ + Ψ̇) + 2Φ̈− δkm∂k∂m(Φ−Ψ)

]
+ ∂i∂j(Φ−Ψ) (8)

⇒ δGij = ∂i∂j(Φ−Ψ) for i ̸= j (9)

1.2 Energy-momentum Tensor

Stress-energy tensor of fluid, four velocity uµ satisfying uµuµ = −1:

Tµν = (ρ+ P )uµuν + Pgµν (10)

uµuµ = gµνu
νuµ = −a2(u0)2 = −1 (11)

⇒ ū0 =
1

a
and ū0 = gµ0u

µ = −a (12)

where the last line follows because for a comoving observer, ui = 0.
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⇒ T̄00 = (ρ+ P )u20 + Pg00 = a2(ρ+ P )− a2P = a2ρ (13)

T̄ij = Pgij = a2Pδij (14)

Now perturb:

δgµν ū
µūµ + 2ḡµν ū

(µδuν) = 0 (15)

⇒δg00ū
0ū0 + 2ḡ00ū

(0δu0) = −2a2Ψ · 1

a2
− 2a2 · 1

a
· δu0 = 0 (16)

⇒δu0 = −Ψ

a
(17)

Let δui =
vi

a
, viis the three velocity.

δuµ =
1

a
(−Ψ, vi) and δuµ = a(−Ψ, vi) (18)

Now for the energy momentum tensor:

δTµν = (δρ+ δP )ūµūν + 2(ρ+ P )δu(µuν) + δPgµν + Pδgµν + a2P Πµν (19)

δT00 = a2ρ(δ + 2Ψ) (20)

δT0i = −a2(ρ+ P )vi where vi = ∂iv + v̂i (21)

δTij = a2 [δP − 2PΦ] δij + a2PΠij

= a2P [(δP/P − 2Φ)δij +Πij ] (22)

where Πij = ∆ijΠ+∇(iΠj) + Π̂ij , and the operator ∆ij = ∇i∇j − δij∇2/3 vanishes for i = j, i.e. off-diagonal
only.

1.3 Einstein Equations

Equating components, we reach the cosmological Einstein equations perturbed up to linear order (where
ρ ≡ Σiρi):

3H2 = 8πGNa
2ρ (23)

−(2Ḣ+H2) = 8πGNa
2P (24)

2∇2Φ+ 6HΦ̇ = 8πGNρa
2(δ + 2Ψ) (25)

2∇i

(
Φ̇ +HΨ

)
= −8πGNρa

2(ρ+ P )vi (26)

⇒ 2∇2
(
Φ̇ +HΨ

)
= 8πGNρa

2(ρ+ P )θ (27)

i ̸= j ∂i∂j(Φ−Ψ) = 8πGNa
2P∆ijΠ ≃ 0 ⇒ Φ = Ψ (28)

where we have taken a covariant derivative of the 0i equation, and defined θ = ∇ivi = ∇2v. Going glibly to
Fourier space, this gives v = −θ/k2.

Pulling the derivatives off eq.(26) and recalling vi = ∂iv (dropping vector part), we take the combination
00 + 3H∇−1(0i):

2∇2Φ+ 6H2Ψ = 8πGNρa
2[δ + 3H(1 + w)v + 2Ψ] (29)

⇒ 2∇2Φ = 8πGNρa
2∆ (30)

where ∆ = δ + 3H(1 + w)v = δ − 3H(1 + w)θ/k2 is a gauge-invariant density perturbation. On sub-horizon
scales, H/k << 1 and ∆ ≃ δ.

Equations 28 and 30 are very important – they are two constraint equations in GR. It is almost a defining
feature of MG that these equations get modified in other gravity theories. They tell us how the spacetime
potentials are linked to each other and the perturbations of the matter content. However, to evolve the system
forwards in time, we need the (perturbed) conservation of energy-momentum.
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1.4 Fluid Equations

δ(∇µT
µ
ν ) = 0 (31)

Exercise: expand this in perturbed variables, including perturbed Christoffels (get these from myMathematica
notebook). Using the background conservation equation, ρ̇ = −3H(ρ + P ), and defining the sound speed
c2s = δP/δρ, show that the two components of eq.(31) yield:

δ̇ + 3H(c2s − w)δ + (1 + w)(θ + 3Φ̇) = 0 (32)

θ̇ +

[
H(1− 3w) +

ẇ

1 + w

]
θ +∇2

(
c2s

1 + w
δ +Ψ

)
= 0 (33)

For non-relativistic matter, c2s = w = 0:

δ̇ + θ − 3Φ̇ = 0 (34)

θ̇ +Hθ +∇2Ψ = 0 (35)

The Φ̇ term above is absent in Newtonian gravity. This equation says: the velocity (divergence) increases in
the opposite direction to potential gradients, i.e. stuff falls into potential wells. To eliminate, take derivative
of Poisson equation in and use ∆ ∼ δ on scales of interest:

−2k2Φ̇ = 8πGNρa
2[δ̇ + 2Hδ + ρ̇/ρ] = 8πGNρa

2[δ̇ −Hδ] (36)

Use in eq.(35):

δ̇ = −θ − 3

2k2

(
8πGNρa

2[δ̇ −Hδ]
)
= −θ − 9H2

2k2
[δ̇ −Hδ] ≃ −θ (37)

where the last line follows from H/k << 1. Think about what this says: if there is a net inflow of matter into
a volume, such that θ is negative, then δ will grow. Differentiate 37 and sub in θ eq:

δ̈ = −θ̇ = Hθ +∇2Ψ (38)

= −Hδ̇ +∇2Ψ (39)

⇒δ̈ +Hδ̇ − 3H2

2
δ = 0 (40)

where the last line has crucially used that Φ = Ψ in GR at late times.

Exercise: Show that, *during a matter-dominated era* (ΩM ≃ 1), the solutions of eq.(40) give δ ∝ a and
δ ∝ a−3/2 (decaying mode).

The final important quantity we need to introduce is the growth rate. It is defined as (mixing up z and a):

f(z) =
d ln∆

d ln a
≃ d ln δ

d ln a
(41)

Then during a matter era, we have f ≃ 1. On subhorizon scales it is independent of k. See plot. Note surveys
generally measure fσ8.
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2 MG Models

SGR =

∫
d4x

√
−g
{
M2

P

2
(R− 2Λ)− LM (ψ, gµν)

}
(42)

2.1 (Simple) Scalar-Tensor & f(R) Actions

SST =

∫
d4x

√
−g
{
M2

P

2
ϕR− ω(ϕ)

ϕ
∇µϕ∇µϕ− 2U(ϕ)− LM (ψ, gµν)

}
(43)

Note that we could write the coupling to the Einstein-Hilbert term as F (ϕ), but we are always able to redefine
the scalar field so that we only need two out of F (ϕ), ω(ϕ), U(ϕ). Classic JBD recovered in the limit ω =
const., with the GR limit ωJBD → ∞. The current bound from Solar System tests (Bertotti et al. 2003) is
ωJBD > 40, 000 (Gaia improvements?)

Field equations:

ϕGµν + gµν

[
□ϕ+

1

2

ω(ϕ)

ϕ
(∇ϕ)2 + U(ϕ)

]
−∇µϕ∇νϕ− ω(ϕ)

ϕ
∇µ∇νϕ = 8πGNT

m
µν (44)

[2ω(ϕ) + 3]□ϕ+ ∂ϕω(ϕ)∇µϕ∇µϕ+ 4U(ϕ)− 2ϕ∂ϕU = 8πGTm (45)

∇µ[(T
m)µν ] = 0 (46)

Note that the gravitational part of the action can be made equivalent to GR under a conformal transformation:

gµν = A2(ϕ)g̃µν gµν =
1

A2(ϕ)
g̃µν (47)

√
−g = A4(ϕ)

√
−g̃ R =

1

A2(ϕ)

[
R̃− 6∇̃µ lnA∇̃µ lnA

]
(48)

Tµν =
1

A2(ϕ)
T̃µν Tµν =

1

A6(ϕ)
T̃µν (49)

where A is a factor we choose. We won’t go through the algebra here (exercise), but to remove the coupling
ϕR in the ST action, choose A = ϕ−1/2. After redefining the scalar field and potential according to

dφ

d ln a
= (12 + 8A2ω)1/2 V = 2A4U(ϕ) (50)

we transform SST to

SST =

∫
d4x

√
−g
{
M2

P

2
R̃− 1

2
∇̃µφ∇̃µφ− V (ϕ)− LM (ψ, g̃µν)

}
(51)

⇒ Gµν = 8πGN

(
T̃m
µν + T̃φ

µν

)
(52)

BUT ∇µ(T̃
µν) ̸= 0 (53)

We won’t pursue this generalised ST theory further (arbitrariness in potentials etc). Instead let’s look at one
of the most popular variants of ST, f(R) gravity. Back to the Jordan frame action eq.(43), and set

ϕ =
df

dR
= fR ω(ϕ) = 0 U(ϕ) =

M2
P

4
[RfR − f(R)] (54)

Sf =

∫
d4x

√
−g
{
M2

P

2
(fRR− [RfR − f(R)])− LM (ψ, gµν)

}
(55)

=

∫
d4x

√
−g
{
M2

P

2
f(R)− LM (ψ, gµν)

}
(56)

So f(R) gravity is really just an ST theory, where the new degree of freedom is the ‘scalaron’ field, ϕ ∼ fR.
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2.2 f(R) Background Cosmology

fRRµν −
1

2
f(R)gµν −∇µ∇νfR + gµν□(fR) = 8πGNT

m
µν (57)

3□fR + fRR− 2f(R) = 8πGNT
m (58)

Now put this on a (unperturbed) FRW metric (where the second equation comes from taking the 00+ii
components):

3fRH2 = 8πGNa
2ρm +

a2

2
[fRR− f(R)]− 3HḟR (59)

−2(Ḣ − H2) = 8πGNa
2ρm(1 + wm) + f̈R − 2HḟR (60)

□fR =
8πGN

3
(3Pm − ρm) +

2

3
f(R)− 1

3
fRR ≡ ∂Veff

∂fR
(61)

Matter and the form of f(R) act to form an effective potential for the scalaron. The effective mass of the
scalaron is then:

m2
ϕ =

∂2Veff
∂f2R

=
1

3

(
2
df

dfR
−R− fR

dR

dfR

)
(62)

=
1

3

(
2fR

dR

dfR
−R− fR

dR

dfR

)
(63)

=
1

3

(
fR
fRR

−R

)
(64)

In order not to mess up the early universe, we generally want f(R) ∼ R at high R, and correspondingly fR ∼ 1,
fRR << 1.

m2
ϕ =

1

3fRR
(fR −RfRR) ≃

fR
3fRR

(65)

⇒ λC ≃ 2π

mϕ
(66)

So we’ve required that in high-curvature regimes the mass of the scalaron becomes large, and it’s Compton
wavelength, limiting its propagation distance – this is our first early glance of a chameleon-like mechanism.

2.3 Conditions for Viable Models

f(R) = R + αR2 has been investigated since the 80s as an inflation model, but it’s not good for late-time
acceleration – we need something that predominantly modifies the low-R regime. Something like f(R) =
R− α/Rn is a decent guess, but it fails to satisfy some necessary conditions for viable models. These are:

1. fR > 0 for R > R0, where R0 is the scalar curvature today (note R = 6/a2(Ḣ + H2)). Friedmann:
3H2fR = 8πGNρ . . ., don’t want to change sign of Geff .

2. fRR > 0 for R > R0 to ensure stability at high R, by having m2 > 0 above. (Also for consistency with
local tests.)

3. f(R) → R− 2Λ to preserve the early universe.

4. fR small at current epochs, ∼ 10−5 or less – we will see that fR0 affects structure formation.

Some example models from the literature:

1. f(R) = R− µRc

(
R
Rc

)p
with 0 < p < 1 and µ, Rc > 0.

2. f(R) = R− µRc

(
R
Rc

)2n

(
R
Rc

)2n
+1

with n, µ, Rc > 0

3. f(R) = R− µRc

[
1−

(
1 + R2

R2
c

)−n
]
with n, µ, Rc > 0

5



4. f(R) = R− µRc tanh(R/Rc) with µ, Rc > 0

All of these models satisfy f(R = 0) = 0, so the effective CC vanishes in flat spacetime. They also all have a
cosmological-constant-like regime for R >> Rc. For model 1, this requires that p be very close to 0, though.
For model 4, f(R) → R − µRc very quickly for R >> Rc. For models 2 and 3, in the R >> Rc regime they
are approximately:

f(R) = R− µRc

(
1−

[
R2

R2
c

]−n
)

(67)

so f(R) → R− µRc irregardless of n in this regime.

2.4 Cosmological Perturbations in f(R)

First we need the perturbed Einstein field equations. The 00 components of this is, where δF = δfR and we
are briefly back in physical time:

k2

a2
Φ+ 3H(Φ̇ +HΨ) =

1

2fR

[
3H ˙δF − δF

(
3Ḣ + 3H2 − k2

a2

)
− 3H ˙fRΨ− 3 ˙fR(Φ̇ +HΨ)− 8πGNρmδm

]
(68)

⇒ −k
2

a2
Φ =

1

2fR

[
8πGNρmδm − k2

a2
δF

]
(69)

⇒ Φ = − 1

2fR

[
8πGNρm

a2

k2
δm − δF

]
(70)

where in the last line we’ve used the quasistatic approximation (QSA), that is, |Φ′| ∼ H|Φ|, |Φ′′| ∼ H2|Φ| <<
|k2Φ|, and the same for Ψ, and even δF (see later). The first two parts of this are broadly equivalent to taking
the Newtonian limit. The extension to the scalaron one might question, but it has been verified for a number
of MG theories. See von Braun Bates, Noller & Ferreira for f(R). Note that also ˙fR ∼ H.

Now the ij component is:

Φ−Ψ =
δF

fR
(71)

⇒ Ψ = − 1

2fR

[
8πGNρm

a2

k2
δm + δF

]
(72)

And the scalaron equation of motion, where we’ve dropped terms that are suppressed compared to δρm inside
the Hubble radius, and used δR = δF/fRR:

¨δF + 3H ˙δF + δF

(
k2

a2
+m2

)
=

8πGN

3
ρmδm (73)

where recall m2 = fR/(3fRR).
Now for the fluid equations. Life is often easiest if we express our time derivatives in terms of the variable

x = ln a. We’ll denote these derivs as f ′ = df/dx = Hḟ . Then eqs.35 and 34, where θ̃ = θ/H :

δ′ + θ̃ + 3Φ′ = 0 (74)

θ̃′ +

(
1 +

H′

H

)
θ̃ − k2

H2
Ψ = 0 (75)

where we’ve used θ̇ = Ḣθ̃ + H
˙̃
θ = H2(θ̃′ + θ̃H′/H) and divided the expression through by H2. Now take a

derivative of the delta eq and sub in the theta eq:

δ′′ = −3Φ′′ − θ̃′ (76)

= −3Φ′′ +

(
1 +

H′

H

)
θ̃ − k2

H2
Ψ (77)

= −3Φ′′ −
(
1 +

H′

H

)
δ′ − 3

(
1 +

H′

H

)
Φ′ − k2

H2
Ψ (78)

⇒ δ′′ +

(
1 +

H′

H

)
δ′ +

k2

H2
Ψ ≃ 0 (79)
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Now, in the subhorizon regime, k2 >> m2 in eq.(73). Further applying the QSA we find:

δF ≃ 1

3
· 8πGNρm

a2

k2
δm (80)

Now use eq.(72)

Ψ = − 1

2fR
· 4
3
·
[
8πGNρm

a2

k2
δm

]
(81)

Φ = − 1

2fR
· 2
3
·
[
8πGNρm

a2

k2
δm

]
(82)

Then finally eq.79 becomes:

δ′′ +

(
1 +

H′

H

)
δ′ − 1

2fRH2
· 4
3
·
[
8πGNρma

2δ
]
= 0 (83)

δ′′ +

(
1 +

H′

H

)
δ′ − 4

3
· 3
2
Ωmδ = 0 (84)

where we’ve used

Ωm =
8πGNa

2ρm
3H2 · fR

(85)

The factor of fR in the denominator here is not present in LCDM. Now, we see that this differs by a factor of
4/3 compared to our usual LCDM growth equation.

Let’s solve this equation in the matter-dominated era again. Here Ωm = 1, and H′/H = −1/2. So, trying
the usual δ ∝ epx:

δ′′ +
1

2
δ′ − 2δ = 0 (86)

⇒ 2p2 + p− 4 = 0 (87)

⇒ p =
1

4

(
−1±

√
33
)

(88)

Taking the growing mode, we have δ ∝ a(
√
33−1)/4, and hence:

f =
d ln δ

d ln a
=

√
33− 1

4
≃ 1.186 (89)

Growth is enhanced w.r.t. LCDM! Here we solved the e.o.m. of the scalaron in a sub-horizon regime, which
resulted in this k−independent result again. The fully equation can be solved numerically.

2.5 DGP Gravity

SDGP =
1

2κ25D

∫
d5X

√
−g̃R̃+

1

2κ24D

∫
d4x

√
−gR−

∫
d5X

√
−g̃Lm (90)

where g̃AB is the metric in the 5D bulk and gµν = ∂µX
A∂νX

B g̃AB is the induced metric on the 3-brane. The
effective Plancks constants of bulk and brane are here denoted

κ25D =M−3
5D κ24D =M−2

4D ≡ 8πGN (91)

ds2 = −n2(τ, y)dτ2 + a2(τ, y)γijdx
idxj + dy2 (92)

G̃AB = R̃AB − 1

2
R̃g̃µν = κ25DT̃AB (93)

DGP considers the bulk to be Minkowski, so there can be no matter in the bulk. The brane can contribute
a possible tension to the stress-energy tensor *on* the 3-brane, but here we choose this tension to be zero.
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However, the brane itself has a scalar curvature contribution (depends on a and n and derivatives, too messy
to write out, diagonal):

T̃AB = Tm
AB + UAB (94)

TAB = (−ρM , Pm, Pm, Pm, 0) (95)

After thinking carefully about junction conditions at the brane, we obtain the following Friedmann equation:

ϵ

rc

√
H2 +

K

a2
= H2 +

K

a2
−
κ24D
3
ρm (96)

Crossover scale rc =
κ25D
2κ24D

=
M2

4D

2M3
5D

(97)

H =
ȧb
abnb

(98)

where subscript b indicates evaluation on the brane. ϵ has come from taking a square root, and gives to
branches to the theory for ϵ = ±1. Setting the curvature K = 0:

H2 − ϵ

rc
H =

κ24D
3
ρm (99)

(100)

and matter evolves according to it’s usual equation w.r.t. to the time dt = nbdτ . Because of this ρm ∝ a−3 as
usual, and hence in the far future we reach the dS solution for the case ϵ = +1:

H → HdS =
1

rc
(101)

where rc needs to be of order ∼ H−1
0 . For this reason this branch of the model is often known as the self-

accelerating branch. The acceleration is the result of gravitational ‘leakage’ into the bulk on horizon scales.
A flat DGP model is consistent with SN data, but comes under pressure from BAO and the CMB shift

parameter; an open model fits slightly better. Show figure, where Ω0
rc = ([1− Ω0

m]/2)2.

2.6 DGP Perturbations

Perturbed line element:

ds2 = −(1 + 2Ψ)n(t, y)2dτ2 + (1− 2Φ)A(τ, y)2δijdx
idxj + 2rc∂iBdx

idy + (1 + 2E)dy2 (102)

This time we’ve jumped straight to a flat 3-metric, γij = δij , and we’ve generalised to A; the solution for the
self-accelerating branch is A = a(τ)(1 +Hy), which reduces to a at y = 0 on the brane. B is identified as a
brane-bending mode.

We’re only going to need one part of the full 5D Einstein equations; the component δG̃5
5 = 0 gives:

∇2

A2
(Ψ− 2Φ)− rc

A2

(
2A′

A
+
n′

n

)
∇2B = 0 (103)

In this case, we get to the expressions we want more directly by using the junction conditions at the brane.
These are:

Kµν −Kgµν = −
κ25D
2
Tµν + rcGµν (104)

hµν = gµν − nµnν Kµν = hλµ∇λnν (105)

The 00, spatial and 55 components of eq.(104) give:

−2k2

a2
Φ = κ24Dδρm +

k2

a2
B +

3

rc
Φ′ (106)

Ψ− Φ = B (107)

Ψ′ − 2Φ′ = 0 (108)
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Now, Φ′ ∼ (k/a)Φ (note that prime is a *spatial* derivative here). Comparing the last two terms of the 00
equation:

k2

a2

(
B +

3

rc

a

k
Φ

)
(109)

If the mode wavelength λ ∼ k−1 << rc, this term is small, and we drop it. Using eqs.104, 106 and107:

−2k2

a2
Φ = κ24Dδρm +

k2

a2
B −2k2

a2
Ψ = κ24Dδρm − k2

a2
B (110)

Now from eq.(103) we get, using the slip relation:

Ψ− 2Φ− rc

(
2A′

A
+
n′

n

)
B = B

[
1− rc

(
2A′

A
+
n′

n

)]
− Φ = 0 (111)

Subbing this into 110:

−2k2

a2
Φ = κ24Dδρm +

k2

a2
Φ

1

[. . .]
⇒ −2k2

a2
Φ

(
1 +

1

2[. . .]

)
= κ24Dδρm (112)

−2k2

a2
Φ = κ24Dδρm × 2[. . .]

1 + 2[. . .]
⇒ −2k2

a2
Φ = κ24Dδρm ×

(
1− 1

1 + 2[. . .]

)
(113)

3β = 1 + 2

[
1− rc

(
2A′

A
+
n′

n

)]
= 3− 2rc

(
2A′

A
+
n′

n

)
(114)

So finally we have:

−2k2

a2
Φ = κ24Dδρm ×

(
1− 1

3β

)
−2k2

a2
Ψ = κ24Dδρm ×

(
1 +

1

3β

)
(115)

Then recall eq.79:

δ′′ +

(
1 +

H′

H

)
δ′ +

k2

H2
Ψ ≃ 0 (116)

⇒ δ′′ +

(
1 +

H′

H

)
δ′ − 3

2
ΩM0δ

(
1 +

1

3β

)
= 0 (117)

where this time we have kept ΩM in. Using A = a(τ)(1 + Hy) and n = 1 + H(1 + Ḣ/H2)y, one can easily
show that (exercise – remember the brane is at y = 0):

β = 1− 2Hrc

(
1 +

Ḣ

3H2

)
(118)

Deep in the matter era, the horizon is well below the crossover scale, so Hrc >> 1 and β ≃ −Hrc, i.e. large
and negative (recall Ḣ = −0.5H2 in the matter era). During this phrase, the growth equation is close to the
GR/LCDM one.

In contrast, in the late dS solution H → HdS , a constant, so β → 1 − 2Hrc ≃ −1 if rc is of order the
horizon. Then 1 + 1/3β ≃ 2/3, modifying the growth index again. This late-time case is harder to solve by
hand, but we can see that the driving term of the equation is weakened w.r.t. LCDM (it is 1.5ΩM in GR, and
ΩM here).

We saw that in the matter era f = 1; at late times it’s evolution is often parameterised as f ≃ Ωγ
M , where

γ = 0.55 in GR, and γ ≃ 0.68 in DGP. Reference: Linder, PHYSICAL REVIEW D 72, 043529 (2005) Cosmic
growth history and expansion history.

We can see from eq.(115):

Geff = GN ×
(
1 +

1

3β

)
(119)

Comparing this to JBD, where

Geff = GN × 4 + 2ωJBD

3 + 2ωJBD
(120)

we find ωJBD ≡ 3
2(β − 1). But there’s a deep sickness here. Since for the accelerating branch of DGP β is

negative, this corresponds to ωJBD < −3
2 . Recall that ωJBD parameterises the kinetic term of the scalar. We

find that the scalar degree of freedom in DGP is a ghost, meaning its KE is negative in the Einstein frame.
This essentially makes the theory inviable. Note that this is *not* true of the non-accelerating branch, sign
the sign in eq.(118) is opposite.
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2.7 Horndeski Gravity & Galileons

The study of the scalar d.o.f. in DGP gave rise to another family of theories. Horndeski gravity (originally
Walter Horndeski 1974) is the most general theory one can write down involving one additional scalar d.o.f.
added to a metric theory of gravity in 4D, where the eoms are up to second order in derivatives. As such, it
encompasses nearly all of the scalar-tensor type models: quintessence & JBD, k-essence, phantom DE, f(R),
Galileons, etc. What takes it beyond regular ST is the presence of derivative couplings.

SHD =

∫
d4x

√
−g [L2 + L3 + L4 + L5 − Lm(ψ, gµν)] (121)

L2 = G2(ϕ,X) (122)

L3 = −G3(ϕ,X)□ϕ (123)

L4 = G4(ϕ,X)R+
d

dX
G4(ϕ,X)

[
(□ϕ)2 − (∇µ∇νϕ)(∇µ∇νϕ)

]
(124)

L5 = G5(ϕ,X)Gµν∇µ∇νϕ (125)

− 1

6

d

dX
G5(ϕ,X)

[
(□ϕ)3 − 3□ϕ(∇µ∇νϕ)(∇µ∇νϕ) + 2(∇µ∇νϕ)(∇ν∇ρϕ)(∇ρ∇µϕ)

]
(126)

where X = −∇µϕ∇µϕ/2 ≡ ϕ̇2/2 on a Minkowski (or FRW phys time) background. E.g. f(R) is recovered for
G4 = ϕ = fR, G2 = V (ϕ) = f(R)−RfR, G3 = 0.

Another interesting case of study are the Galileon family of theories:

G2 = −c2X G2 =
2c3
M3

X G4 = −
[
M2

P

2
+

c4
M6

]
G5 =

3c5
M9

X2 (127)

where the ci are constants andM is a mass. Here, the Gi only depend on X, never ϕ directly. This means that
the Lagrangian is invariant under the shift ∂µϕ → ∂µϕ + bµ. The connection of this symmetry to cosmology
isn’t immediately obvious, but it’s interesting from a theory viewpoint: it ensures that the classical solutions of
the theory are safe from corrections at loop order. i.e. a high-energy completion of the theory won’t invalidate
this low-energy treatment.

2.8 Viability Bounds on Horndeski

The recent results from the BNS were very important for constraining sectors of general HD theory. To see
why, we first need to calculate the GW speed in this framework. To do this, we will write the line element in
the ADM form (different to before):

ds2 = −N2dt2 + a2(t)γijdx
idxj (128)

We can set N̄ = 1 by our choice of time coordinate. Now perturb N = 1 + δN , Ni = ∂iψ (not needed) and

γij = a2e2ζ(eh)ij = δij + hij +
1

2
hki hkj + . . . (129)

where hij satisfies the usual transverse traceless conditions, ∂
ihij = hii = 0, and a spatial gauge transf has been

used. Then the tensor part of the second-order action:

S
(T )(2)
HD =

1

8

∫
dtd3x a3

[
GT ḣ

2
ij −

FT

a2
(∂khij)

2

]
(130)

GT = 2
[
G4 − 2XG4X −X

(
Hϕ̇G5X −G5ϕ

)]
(131)

FT = 2
[
G4 −X

(
ϕ̈G5X +G5ϕ

)]
(132)

⇒ c2GW =
FT

GT
(133)

One requires c2GW > 0 and c2S > 0 to prevent the perturbation modes from exhibiting exponential growth, i.e.
gradient instabilities. Likewise we require GT > 0 (and similarly for scalar modes) to guarantee the kinetic
terms of scalar and tensor perturbations are positive, i.e. absence of ghost instabilities.

The comparison of gamma-ray spectrograph and GW detector data from event GW170817 tells us that
the EM and GW counterparts of this event reached Earth within two seconds of oneanother. Let’s work out

10



the implications of this, pre-emptively using the deviation αT ; note that for a very local source we can use
Euclidean geometry:

c2GW = 1 + αT (z) (134)

∆t = tEM − tGW =
d

c
− d

cGW
(135)

=
d

c

(
1− 1√

1 + αT (0)

)
≃ d

c

αT

2
(136)

⇒ αT (0) =
2∆tc

d
=

4s · 3× 108ms−1

40Mpc
≃ 10−15 (137)

This is tiny! Note that because the same ingredients appear in FT and GT , we’ve no easy way to make the
denominator parameterically larger than the numerator. We could look at making the numerator very small
but this is hard to achieve as a function of redshift due to the presence of things like ϕ̈ and X. (Loophole here
w.r.t. current data only).

Barring a finely-tuned situation, our most likely alternative seems to be that G4X = G5X = G5ϕ = 0. But
note that now G5 is at most a constant, and under and integration by parts we reach ∇µGµν = 0, so L5 = 0.
We lose all of the quintic Lagrangian, and much of the quartic. Looking back at our Galileon example, we
must have c4 = c5 = 0. Only the cubic term is left, though this is constrained in other ways (see later).

2.9 The Alpha Parameters

As you can guess from the action, Horndeski can be messy to work with. At the level of linear PT, we define
another set of parameters that actually appear in the field equations. Note that we can pull GT out of the
action, where it acts like an effective (possible time-evolving Planck mass):

M2
∗ = GT αM =

1

H

d lnM2
∗

dt
(138)

H2M2
∗αK = 2X (G2X + 2XG2XX − 2G3ϕ − 2XG3ϕX)

+ 12ϕ̇XH (G3X +XG3XX) (139)

H2M2
∗αB = 2ϕ̇ (XG3X −G4ϕ) (140)

Explain these. NB: these are the reduced versions, ie. post-GW170817, where we’ve applied

αT = 2X
(
2G4X − 2G5ϕ − (ϕ̈− ϕ̇H)G5X

)
= 0 (141)

Reference: Bellini & Sawicki 2014, show table. These parameters have grown in popularity because they i)
have physical meaning, ii) appear more directly in the common linear equations, e.g. the Poisson equation:

2∇2Φ = 8πGeffρa
2δ (142)

Geff

GN
= 1 +

αB (αB + 2αM )

(αK + 3αB
2)c2s

(143)

We can now express the stability constraints on the scalar sector more easily. The equivalent of eq.130 is

S
(S)(2)
HD =

1

8

∫
dtd3x a3

[
GS ζ̇

2 − FS

a2
(∂ζ)2

]
(144)

We can now see that we require the following:

GS > 0 ⇒ 2M2
∗ (αK + 3αB

2)

(2− αB)2
> 0 (145)

c2s =
FT

GT
= − 1

H2(αK + 3αB
2)

[
(2− αB)

(
Ḣ −H2αM − 1

2
H2αB

)
−Hα̇B +

ρm + Pm

M2
∗

]
> 0 (146)

Note that the combination appearing in the denominator of 145 has no dependence on αK , so we don’t expect
this to affect galaxy clustering.
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Note that since the Gi are functions, the αi are also functions. However, if we don’t specify a full model,
we can’t calculate the evolution of ϕ and X, and hence the time dependence of αi. The standard approach to
this is to use an ansatz, the most common ones being:

αi = cia αi = cia
p αi = ciΩΛ(a) (147)

The ability of these to represent ‘real’ models has been called into question (Linder). Nevertheless, using such
ansatzes, the αi can be constrained with data → Noller plot. We see (note no αK , talk about codes later):

• CMB data rules out things too far from the line αM ∝ αB, due to the ISW effect. However, large values
of both are allowed.

• Large negative values of both are ruled out by stability constraints.

• The growth of LSS cuts out higher values of αM .

• Things are tighter for the ∝ a ansatz, which kicks in at much earlier times (consider z = 2).

The smallest contours and solid line represent a recent theoretical bound claiming that |αM + αB| < 10−2

(technical result). Reference: Creminelli 2019.
At one time there was a fifth parameter, αH , which quantified the disformal symmetries of a theory.

However, it was shown (Creminelli 2018) that in these theories GW can decay into the DE scalar. The
cross-section is Γγ→ππ ∝ (c2s − 1), so there is a loophole here if the sound speed is 1.

Finally, we should note that there is a caveat to the GW results. The mass scale that appears in the
Galileons can be given a ballpark estimate:

M ≲ ΛHD ∼ (MPH
2
0 )

1
3 ∼ 260Hz (148)

where ΛHD is the cut-off scale of Horndeski, which we think of as an EFT for scalar degrees of freedom. Note
that the value of this cut-off is right in the middle of the LIGO band for GW170817. Therefore, it is just
possible that we are using the EFT outside of its regime of validity, and that really we need the full UV theory
to compute what we expect to see at events like GW170817. Reference: de Rham & Melville 2018.
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3 Screening Mechanisms

Need to satisfy SS tests, e.g. Several types: chameleon, dilation, symmetron, Vainshtein, K-mouflage. Chameleon
and Vainshtein are the dominant representatives.

3.1 Chameleon Mechanism

Start from an ST action in the Einstein frame, similar to eq.51:

S =

∫
d4x

√
−g
{
M2

P

2
R− 1

2
∇µφ∇µφ− V (ϕ)

}
+ SM (ψ,A2(ϕ)gµν) (149)

Take ϕ equation, where g̃µν = A2(ϕ)gµν is the Jordan frame metric:

δS

δϕ
=

√
−g [□ϕ− ∂ϕV ] +

δS

δg̃µν

δg̃µν
δϕ

= 0 (150)

⇒
√
−g [□ϕ− ∂ϕV ] +

√
−g̃
2

T̃µνgµν · 2A∂ϕA = 0 (151)

⇒
√
−g [□ϕ− ∂ϕV ] +

√
−g̃T̃ ·

∂ϕA

A
= 0 (152)

⇒ □ϕ = ∂ϕV −A3T̃ ∂ϕA (153)

where we’ve used
√
−g̃ = A4√−g. Now using A4T̃ = T and T = −Aρm:

□ϕ = ∂ϕVeff Veff = V + ρmA(ϕ) (154)

Consider how this potential varies for the simple choices V ∝ ϕ−n, A = ϕ → sketches. Note that this ties back
into the idea of a density-dependent mass, as we saw earlier for f(R) (which ofc is equivalent to ST):

m2 = ∂2ϕVeff = ∂2ϕV + ρm∂
2
ϕA(ϕ) (155)

Two common forms used are a Ratra-Peebles potential, and a linear function for A (since the field excursion
must be smaller than the Planck mass):

V (ϕ) =
M4+n

ϕn
A(ϕ) ≃ 1 + ξ

ϕ

MP
(156)

To study how this works in more detail, let’s consider the simple example of a spherical, uniform density
object embedded in a flat background:

ρ = ρa, r > R ρ = ρo, r < R (157)

Eq.154 becomes

ϕ′′ +
2

r
ϕ′ = V,ϕ + ξ

ρ

MP
(158)

A full solution for general V would require numerics, but we can infer basic features more heuristically. First,
we posit that deep inside the object where screening is complete, ϕ is very massive and cannot evolve – hence
it must adopt a constant value, ϕ = ϕo. At large distances it must also tend to a constant ϕ → ϕamb. Then
there must be a transition regimes, within a Compton wavelength r m−1 where the solution evolves like 1/r.
This leads us to guess the form:

ϕ = B +
A

r
(159)

ϕ = ϕa +
R

r
(ϕo − ϕa) (160)

where the last line comes from requiring ϕ = ϕo at r = R. This solution solves the Laplace equation, ∇2ϕ ≃ 0.
On these grounds we make an electrostatic analogy where any scalar ‘charge’ in the body is confined to a thin
shell of thickness ∆R around its outside. This charge density ξρ∆R/MP supports a field gradient discontinuity:

dϕ

dr

∣∣
r=R+

= ξ
ρ

MP
∆R ≡ − 1

R
(ϕo − ϕa) (161)

13



Second equality comes from eq.(160). Now we use

|Φ|
∣∣∣
R
=
GM

R
=

M

8πM2
PR

=
ρR2

6M2
P

(162)

⇒ ∆R = − 1

R
(ϕo − ϕa) ·

1

ξ
· R2

6MP |Φ|R
(163)

⇒ ∆R

R
=

(ϕa − ϕo)

6MP ξ|Φ|R
(164)

The field profile outside the object can then be written:

ϕ(r > R) = ϕa −
∆R

R

6MP ξ|Φ|R
r

(165)

= ϕa −
∆R

R

ξ

r

6M

8πMPR
(166)

= ϕa −
3ξ

4πMP

∆R

R

Me−ma(r−R)

r
(screened) (167)

where the last line the Yukawa factor for a massive field has been fudged in. This profile is like that of a
massive scalar, except for the coupling has been reduced by the factor ∆R/R << 1, the ‘thin shell’ factor.

This calculation breaks down if the RHS is too big, such that ∆R ≳ R. This happens if |Φ| is small, and
then the object is completely unscreened. The field profile outside the object can then be written:

ϕ(r > R) = ϕa −
3ξ

4πMP

Me−ma(r−R)

r
(unscreened) (168)

In words: in a screened case, the scalar only couples to the thin shell regime, as it is too massive to fluctuate
deeper inside the body. The MG fifth force of the theory is then hugely suppressed compared to the regular
gravitational attraction of the rest of the body, yielding predictions effectively the same as in GR.

3.2 Vainshtein Screening

Let’s consider this in the example of the cubic Galileon, which corresponds to eqs.(127) with c2 = −6, c3 = −1:

L = −2(∇ϕ)2 − 1

Λ3
□ϕ(∇ϕ)2 + gϕ

MP
T (169)

g here controls the coupling to matter, which for convenience here we will take to be a (non-relativistic) point
source of mass M . Then T = −Mδ(3)(x). The equation of motion for ϕ is:

δϕ

[
6□ϕ+

2

Λ3

(
(□ϕ)2 +∇µ(□ϕ)∇µϕ− (∇µ∇νϕ)(∇µ∇νϕ)−∇µϕ□(∇µϕ)

)
− gM

MP

]
= 0 (170)

6□ϕ+
2

Λ3

[
(□ϕ)2 − (∇µ∇νϕ)(∇µ∇νϕ)

]
=
gM

MP
δ(3)(x) (171)

∇ ·
[
6∇ϕ+ r̂

4

Λ3

(∇ϕ)2

r

]
=
gM

MP
δ(3)(x) (172)

Now we integrate the LHS using the divergence rule, recall
∫
(∇ · F )dV =

∫
(F · n̂)dS, and divide the dS

through:

6ϕ′ +
4

Λ3

(ϕ′)2

r
=

gM

4πr2MP
(173)

This is an algebraic equation for ϕ′:

(ϕ′)2 +
3Λ3r

2
ϕ′ − Λ3

4

gM

4πrMP
= 0 (174)
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ϕ′ =
1

2

3Λ3r

2
±

√
9Λ6r2

4
+ Λ3

gM

4πrMP

 (175)

=
3Λ3r

4

{
1±

√
1 +

gM

9πr3MPΛ3

}
(176)

=
3Λ3r

4

{
1 +

√
1 +

1

9π

(rV
r

)3}
(177)

⇒ rV =
1

Λ

(
gM

MP

) 1
3

(178)

where we pick the + solution such that ϕ′ → 0 at large distances from the source (NB: the other sign matches
up to the ghostly self-accelerating solution of DGP). Look at the limits here, first r >> rV :

ϕ′ → 3Λ3r

4

1

18π

(rV
r

)3
=

Λ3

24π

r3V
r2

=
g

3

M

8πMP r2
(179)

Note that the second part above is the usual gravitational force on the body. So

Fϕ

Fg

∣∣∣
r>>rV

≃ g2

3
(180)

In DGP recovers the usual factor of 1/3. Now look at the limits here, first r << rV :

ϕ′ → 3Λ3r

4

1√
9π

(rV
r

) 3
2
=

Λ3

4
√
π

r
3
2
V√
r
=

Λ3

4
√
π

r3V√
rr3V

(181)

≃ r
3
2

r
3
2
V

gM

MP r2
(182)

⇒
Fϕ

Fg

∣∣∣
r<<rV

≃
(
r

rV

) 3
2

(183)

i.e. inside the Vainshtein radius, the fifth force is highly suppressed – the screening mechanism. Note that
unlike the chameleon, there was no environmental dependence on inside and outside the body; only the total
mass matters. Plugging in the numbers, one finds that the Vainshtein radius of the Sun is a few kpc.
→ Show Barreira plot of NFW haloes, largely independent of M . R200 is the radius which the density drops
below 200 times the critical matter density at a given redshift.
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4 More on Observational Signatures of MG

This section is necessarily more qualitative.

4.1 Other Parameterised Approaches

• We met Horndeski, a kind of parameterisation. Another, simpler and more phenomenological parame-
terisation predates this. We have seen already several modified Poisson equations:

−2
k2

a2
Ψ =

1

fR
· 4
3
· [8πGNρmδm] (184)

−2k2

a2
Ψ = κ24Dδρm ×

(
1 +

1

3β

)
(185)

2∇2Φ = 8πGeffρa
2δ

Geff

GN
= 1 +

αB (αB + 2αM )

(αK + 3αB
2)c2s

(186)

⇒ 2∇2Ψ = 8πGNρmδm [1 + µ(a, k)] (187)

Where in the last line the general function µ depends on redshift, and possibly on k. Then recall eq.79:

δ′′ +

(
1 +

H′

H

)
δ′ +

k2

H2
Ψ ≃ 0 (188)

⇒ δ′′ +

(
1 +

H′

H

)
δ′ − 3

2
ΩM (x) [1 + µ(x, k)] = 0 (189)

We could solve this to get the modified growth rate in a general scenario. Conversely, by constraining
the growth rate one can constrain general forms of µ. Another key function appears in the lensing
convergence power spectrum, which goes like κ ∼

∫
∂2(Φ + Ψ).

Φ + Ψ = [1 + Σ(x, k)](Φ + Ψ)GR (190)

So a non-zero slip relation gives a non-zero Σ. Sometimes the slip itself is parameterised as γ = Φ/Ψ,
but µ and Σ are closest to observables.

• It’s be reasoned (Silvestri, Pogosian, Buniy) that a sensible form for the scale-dependence is

µ(a, k) =
1 + p1(a)k

2

p2(a) + p3(a)k2
(191)

Though it seems that the k-dependent terms are generally hard to detect.

• Simpson plots. mu gamma flow chart.

• Pro: model-independence, general constraints. Con: hard to pick a good ansatz, lost direct connection
to action. Linear PT only.

4.2 CMB

• The CMB is one of the most powerfully constraining data sets for cosmological parameters. This is
because it has lots of features (peak heights, widths, positions) that can be calculated to a very large
extent using linear theory and ‘known’/relatively simple physics, e.g. Thomson scattering. Compare this
to probes of large-scale structure, which require nonlinear modelling and lots of prescriptions to fill in
things we aren’t 100% sure how to describe, e.g. SN feedback, magnetic fields, etc.

• However, most of the features above multipole ℓ = 100 were laid down at early times in the universe, long
before most MG/DE models have effects. In fact, only the low-ℓ CMB tail is sensitive to the late-time
universe. This part is called the Integrated Sachs-Wolfe plateau, or ISW plateau.

• The height and shape of the ISW plateau is set by the integrate time variations of the lensing potential,
i.e. Φlens = (Φ+Ψ)/2. So in the model-independent framework above, it is controlled by (variations of)
the Σ function.
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• On it’s own, the ISW effect only rules out extreme models with rapid growth of structure, because on
those large scales cosmic variance limits the minimum error bar of CMB measurements. However, it did
prove to be extremely useful for tests of the cubic Galileon, with c2 = −1 and c3 a parameter to be
constrained.

CTg
ℓ = 4π

∫
dk

k
∆ISW

ℓ ∆g
ℓPR(k) (192)

∆ISW
ℓ =

∫ τ0

τ∗

dτ(Φ′ +Ψ′) jℓ(k[τ0 − τ ]) (193)

where P is the power spectrum of the primordial curvature perturbation. → Renk plot. note that for
the quartic and quintic models things are acceptable, but for the cubic Galileon the ISW contribution is
large and has completely the wrong sign. This makes it incompatible with the data points (but a positive
sign would not have), which come for cross-correlating with the WIS galaxy survey.

The best-fit cubic galileon model is in a 7.8 sigma tension with this data.

• CMB lensing also contributes secondary anisotropies. Since MG can strongly affect the LSS CMB photons
propagate through, this (low-ℓ) affect is also a probe, see plot.

4.3 Matter Power Spectrum, RSDs & Growth

• Consider the autocorrelation function between density fluctuations at two different locations, for r =
x− x′:

ξ(r) =
〈
δ(x)δ(x′)

〉
=

1

V

∫
d3x δ(x)δ(x− r) (194)

→ measure of structure separated by r averaged over survey volume. The power spectrum is effectively
the Fourier transform of the autocorrelation function:〈

δ̃(k)δ̃(k′)
〉
= (2π)3P (k)δ(3)(k− k′) (195)

ξ(r) =

∫
d3k

(2π)3
P (k)eik·(x−x′) P (k) =

∫
d3r ξ(r)e−ik·(x−x′) (196)

The Poisson equation gives us (dropping tildes again):

δm(k, a) = − 2k2a

3ΩM0H2
0

Φ(k, a) (197)

⇒
〈
δ(k)2

〉
∝ k4

〈
Φ2(k, a)

〉
∝ k4D(a)2T (k)2

〈
Φ2
0(k)

〉
(198)

∝
(
k

H0

)ns

D(a)2T (k)2 where P 0
Φ(k) ∝

kns−1

k3
(199)

The power spectrum has dimensions of length3. At low k the kns causes the power spectrum to grow,
but at large k the transfer functions damp it out. The peak is at around k ∼ 2× 10−2, and is related to
the time of matter-radiation equality.

• However, we don’t observe the matter power spectrum directly, for two reasons. Firstly, we don’t see
dark matter; instead we see fluctuations in galaxy density. This is related to DM density fluctuations by
bias. On large, linear scales, the bias is approximate as redshift-dependent only, δm = b(z)δg. On smaller
scales this assumption breaks down. (Issue in MG – how does b change in other gravitites?)

• The second reason is because we observe galaxies in redshift space. We don’t measure distances directly,
but instead we obtain a redshift measurement and convert it to a distance assuming a cosmology. This
would work fine if everything was comoving perfectly, but in reality galaxies have motions that cause us
to mis-estimate their distances. These redshift space distortions (RSD) turn out to be an excellent
probe of gravity (though extracting the measurements requires a fair amount of GR assumptions). →
RSD and FoG diagrams. Two points in redshift and real space are related by

s(r) = r+ vr(r)r̂ (200)

where vr(r) is the PV projected in the radial direction (and recall c = 1 here).
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• Kaiser 1987 (see also Hamilton 1998) showed that, where µ is the cosine between the vector k and the
line of sight, i.e. µ = k · r̂/k:

δsg(k) =
(
1 + β(z)µ2

)
δrg(k) β(z) =

f(z)

b(z)
(201)

⇒ P s
g (k, µ, z) = b(z)2

(
1 + βµ2

)2
P r
m(k, z) (202)

P s
g (k, µ, z) =

(
b(z) + f(z)µ2

)2
P r
m(k, z) (203)

The small scale FoG effect is usually modelled as a multiplicative factor that brings in another free
parameter, the velocity dispersion σv:

FL(k, µ
2) =

[
1 + (kµσv)

2
]−1

FG(k, µ
2) = exp

[
−(kµσv)

2
]

(204)

Note that these are just models – they are not fundamentally derived expressions! The redshift space
power spectrum is usually decomposed into even multipoles. The monopole and quadrupole are commonly
used, the hexadecapole is sensitive to nonlinear scales and requires more in-depth modelling. → Show
RSD figs, fsig8 plots. Note that f is degenerate with the overall amplitude of the power spectrum σ8,
hence we measure combination best.

• Chosen not to discuss BAO in detail here as usually consider geometric probes, though ofc useful for
background EoS.

4.4 Codes for Calculating Linear Perturbations in MG

• Einstein-Boltzmann solvers evolve the system of background and linearised Einstein field equations and
conservation equations for matter and radiation of produce accurate outputs of the simplified cases we
have been discussed. They can handle advanced extensions like curvature, massive neutrinos, different
conditions for inflation that we couldn’t treat analytically. Their results are valid on large horizon scales,
but can’t be trusted fully on nonlinear scales (k ≳ 0.1 h/Mpc).

• Usual outputs are CMB power spectra, including TT, TE, EB, etc.; matter power spectra; CMB lensing
potential, etc. They are fast enough (usually) to be run tens of thousands of times, allowing MCMC
analysis to constrain cosmological parameters.

• There are two dominant packages on the market for LCDM: CAMB (Fortran, synchronous gauge) and
CLASS (C). Modified code versions incorporating MG effects now exist, some for specific MG models,
and some for general parameterised frameworks or several models. Based on CAMB: MGCAMB (mu-
sigma-gamma), ISiTGR, and EFTCAMB based on CAMB. hi class based on CLASS, and a few other
independent codes such as DASh, COOP. I’m aware of specific codes for f(R) gravity, Galileons, and
Einstein-Aether at the least.

• EFTCAMB and hiclass are two of the most popular and well-tested; they employ different action-level
parameterisations. I use hiclass a lot for Horndeski analysis; EFTCAMB employs a slightly more general
framework that uses different notation. On the other hand, if you’re doing a lensing analysis and really
just want to constrain Σ, something simpler like MGCAMB or ISiTGR may be your best bet.

• A newcomer to the modified Einstein-Boltzmann solver is mochi class by Matteo Cataneo and Emilio
Bellini. This uses a reparameterisation of the alpha parameters into an inherently stable basis, developed
in papers by Joe Kennedy, Andy Taylor, Lucas Lombriser et al.

4.5 Further GW Bounds

• GW propagation equation on FRW:

h′′A + (2 + ν)Hh′A +
(
c2Tk

2 + a2m2
)
hA = ΓA (205)

In Horndeski, ν = αM and the other parameters are zero. The modified solution is related to the GR
one by (Nishizawa 2017):

hMG = e−De−ik∆ThGR (206)

D =
1

2

∫
0
dx ν(x) ∆T =

∫ z∗

0
dz

1

H

[
(1− cT )

1 + z
− m2

2k2(1 + z)3

]
(207)
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• Focussing on just ν for now, this term affects the effective luminosity distance of GW source:

h ∝ 1

dL
⇒ h ∝ e−D

dL
≡ 1

dGW
(208)

dL = c(1 + z)

∫ z∗

0

1

H
dz (209)

If we can get both a redshift and good GW measurement from a standard siren, we can potentially bound
ν this way. The measurement would work best with a high redshift source, e.g. a MBHB from LISA. →
plots from Belcagem et al., who define:

dGW (a)

dL(a)
= Ξ0 + an(1− Ξ0) (210)

• This measurement may not work in Horndeski (Dalang & Lombriser 2019).

4.6 Voids

• Voids are a particularly interesting environment in which to test gravity. Their low densities mean
that screening mechanisms are not expected to activate. Voids are only recently being developed as an
observational probe, because by their very nature they are hard to detect; high spectroscopic density
is needed to accurately build up a picture of their true shape. Most often void signals are boosted by
stacking.

• MG can affect voids in three ways:

1. It can affect the lensing potential of the void by causing Φ ̸= Ψ as above in cosmology;

2. The density profile of the void can be affected if the scalar field (say) contributes a non-negligible
energy density.

3. Changes to the background expansion rate (and fifth forces) may affect the rate at which large voids
expand and cannabilise small voids, i.e. affecting population statistics.

• A commonly-used DM density profile in LCDM is:

δ(r) = δc

 1−
(

r
rs

)α
1 +

(
r
rV

)β
 (211)

where δc is the central density, rs is a scale radius that controls where the void crosses zero (roughly),
and α and β control the steepness of the void walls and its compensation ridge. (In fact two of the
parameters are generally fixable in terms of the other two.)

• In reality voids are found in biased tracers. However, eq. 211 is sometimes called the ‘universal’ void
profile, as it seems to do a good job of modelling the DM voids found in most tracers. Most voids are
also shown to be ‘self-similar’, meaning this profile shape seems to apply to a broad range of void sizes
(though larger voids are of course generally deeper).

• Typical depths range down to δv ∼ −0.8, and radii rV ∼ 10− 70 Mpc.

• Real voids are of course not circular, but they become so when stacked. As a general rule, real noncircular
voids and void populations require simulations to study. A number of void-finding techniques exist.

• Without simulations, we cannot study ii) or iii) easily. However, we can posit that DE density have a
small (negligible) shape on the void profile, and calculate the scalar profile, fifth force and lensing over
that void. A well-studied example is cubic Galileon voids, however there seems to be an unphysicality
here – perhaps caused by a breakdown of the QSA? [My void lensing paper]

• Another interesting related phenomenon is troughs – cylindrical underdensities along the line of sight.
Arguably not physical, but look for asymmetry in lensing signal (nothing statistically significant found
yet). [Gruen DES papers]

19



5 Final Comments

• The past ten years have seen rapid progress in creating, testing, and ruling out (or not) models of gravity.
The basic motivators haven’t changed (acceleration, agnosticism and anomalies), but we’ve learnt a
lot about the types of physics that do and don’t work, and even explored new territory (screening,
parameterisations, bigravity).

• Surveys are ongoing and still to come, with tests of DE/MG as one of their key science drivers (DES,
DESI, LSST). We’re going to need to get more advanced in our modelling of the nonlinear regime, both
in LCDM and MG, and more simulations are needed (though these are not a panacea).

• GWs have undoubtedly been the poster child of the recent years, and will continue to yield results as we
climb from first detections to the observatory era.

• Things largely omitted from these notes: many individual gravity theories, unified dark sector theories,
lensing, BAO, simulations, nonlinear prescriptions, EFTofDE details, bias details, Bayesian analysis, dark
sirens. . .

20


	Cosmological Perturbation Theory
	Metric
	Energy-momentum Tensor
	Einstein Equations
	Fluid Equations

	MG Models
	(Simple) Scalar-Tensor & f(R) Actions
	f(R) Background Cosmology
	Conditions for Viable Models
	Cosmological Perturbations in f(R)
	DGP Gravity
	DGP Perturbations
	Horndeski Gravity & Galileons
	Viability Bounds on Horndeski
	The Alpha Parameters

	Screening Mechanisms
	Chameleon Mechanism
	Vainshtein Screening

	More on Observational Signatures of MG
	Other Parameterised Approaches
	CMB
	Matter Power Spectrum, RSDs & Growth
	Codes for Calculating Linear Perturbations in MG
	Further GW Bounds
	Voids

	Final Comments

